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Abstract: The number of built structures on the seabed, such as shipwrecks, energy platforms, and
pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel
or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm
growth depends on substrate characteristics and local environmental conditions, though it is unclear
which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand
the substrate- and site-specific impacts of built structures on short-term biofilm composition and
functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were
deployed for four months at distances extending up to 115 m away from three historic (>50 years
old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and
metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the
taxonomic composition was significantly different between substrates and sites, with substrate being
the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes
related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a
higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how
substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute
to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the
ecological impact of anthropogenic structures on the seabed.

Keywords: biofilms; metagenomics; historic shipwrecks; deep sea; built environment; Gulf of Mexico;
wood; steel

1. Introduction

Upon entering the marine environment, hard surfaces are colonized by microorgan-
isms [1]; this process is initiated by the formation of a conditioning film, which occurs
through the adsorption of organic molecules and other dissolved substances from the
water column onto the substrate [2]. In the early stages of development, pioneer taxa
recruiting to a biofilm can alter the surface properties to achieve a preferable habitat [1–3].
Following the establishment of a microbial biofilm, the surface is then suitable for the
adhesion of other organisms, such as microalgae [4] and marine diatoms [5]. Biofilms and
their associated bacteria can also act as mediators of the larval settlement of invertebrates
and macrofauna [6].

For microorganisms, a surface-attached lifestyle offers several advantages over a plank-
tonic lifestyle in the water column. Non-polar organic compounds attracted to surfaces
contain higher carbon and nutrient concentrations than the surrounding water, enhancing
microbial colonization and activity [7]. Within the exopolysaccharide (EPS) matrix, a key
chemical moiety produced by biofilm-forming microorganisms, sessile prokaryotes are
protected from predators, toxins, viruses, and metal ions [2,8]. Metabolic cooperation and
cell–cell communication can enable the physiological homeostasis of cells within microen-
vironments in the biofilm [9] while providing resistance to physical changes in the local
environment, such as shear stress and ultraviolet radiation [10].
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The success of microbial attachment and subsequent biofilm formation is dependent
on the characteristics of the substrate, including the surface free energy, hydrophobicity,
roughness, architecture, and chemical composition [11–14]. Substrate viscosity and surface
tension are determining factors for communities of biofouling microorganisms [15,16],
while increased surface roughness and hydrophobicity lead to stronger biofilm attach-
ment [5]. The initial communities that recruit to the biofilm are also influenced by local
environmental conditions, including light, temperature, and water depth [12,17]. However,
it remains unclear whether substrate characteristics or environmental conditions have a
greater impact on community composition [11,14].

Marine biofilm research has centered on biofilm communities on steel and wood, both
common anthropogenic materials in the marine environment. Mild steel is frequently used
in the construction of ship hulls and marine infrastructure, including docks, moorings,
pipelines, and oil platforms [18,19], while wood is a common construction material used
in nearshore environments. To better understand microbially influenced corrosion, an un-
avoidable corrosive process on steel in the marine environment [20], the composition of en-
gineering alloys has been observed to recruit different dominant microorganisms within the
biofilm [21]. Recent studies on short-term marine biofilm succession on steel have revealed
a prevalence of Rhodobacteraceae; members of the Alpha-, Delta-, and Gammaproteobac-
teria classes; iron-oxidizing bacteria; and sulfide-oxidizing bacteria [22–25]. Natural and
anthropogenic sources of wood, such as wood falls and wooden shipwrecks, respectively,
are also commonly found on the seabed, including at deeper water depths [26]. Wood is an
important source of organic matter for wood-degrading microbiomes, from coastal regions
to the deep ocean [27]. Wood type has been observed to shape the biofilm microbiome,
typically composed of Actinobacteria and Alpha- and Deltaproteobacteria [28–30].

Pelagic microorganisms are known to play a role in carbon and nutrient cycling in
the water column [31]. Particle-attached microorganisms, including those on detritus
and marine snow, typically have higher cell densities than pelagic microbiomes, and they
have also been recognized as hotspots of carbon cycling [32–34]. While it is realized
that surface-associated marine microbiomes contribute to various biogeochemical cycles,
such as nitrogen fixation [35], sulfate reduction [36], and iron cycling [37], the metabolic
contribution of biofilms on built structures to marine ecosystem function is underexplored.
As the marine built environment expands [38,39], knowledge about how anthropogenic
structures impact the seabed would be improved by examining biofilm metabolisms on
common substrates found in the marine environment.

Shipwrecks represent one common type of built structure in the ocean that trans-
form into artificial reef ecosystems. These abundant and ecologically important structures
are capable of supporting diverse biological communities within their immediate envi-
ronment [30,40]. Thus, this study focused on marine biofilm samples collected in areas
surrounding two historic wooden-hulled shipwrecks and one historic steel-hulled ship-
wreck. By examining the metagenomes of biofilms on steel and wood substrates at different
locations through a comparative framework, this study aimed to understand the substrate-
and site-specific impacts of marine built structures on short-term (3–4 month) biofilm
microbiome formation. These data provide new knowledge on how biofilm community
composition and functional potential are influenced by the presence of wood and steel on
the seabed.

2. Methods
2.1. Field Experiments

Three historic shipwrecks in the northern Gulf of Mexico were selected as sites for this
study. The shipwreck Anona is a steel-hulled steam yacht sunk in 1944 in approximately
1250 m of water, described elsewhere [40]. Site 15711 and Site 15470 are two 19th century
wooden-hulled sailing ships resting in 525 m and 1800 m water depths, respectively, and
they are separated horizontally by 60 nautical miles [41]. Site maps and descriptions
of these recently discovered wooden-hulled shipwrecks have been published in prior
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works [30,41,42]. Microbial Recruitment Experiment (MRE) arrays containing replicate mild
carbon steel (C1020) coupons and/or replicate wood (pine, oak) coupons were deployed
proximate to each shipwreck, with each successive MRE in a single array deployed at
distances extending away from the structure in 25 m increments, up to 115 m (substrates,
sites, and exact distances are detailed in Table S1). In the experimental designs from prior
studies [30,43], carbon steel coupons were deployed at Anona, while carbon steel, pine, and
oak coupons were deployed at Site 15711 and Site 15470. Steel coupon assembly followed
an established method [44]. Wood coupon assembly, MRE and lander array design, and
lander array deployment and recovery have been detailed previously [30]. MRE lander
arrays were deployed from Research Vessel Point Sur in June–July 2019 and recovered in
November 2019. Immediately following recovery, the wood coupon surfaces were scraped
with a flame-sterilized spatula to collect biofilms into Lysing Matrix E tubes containing MT
and sodium phosphate buffers (MP Biomedicals), and the steel coupons were aseptically
sampled into containers. The samples were stored at −20 ◦C shipboard, transported to the
lab, and stored at −80 ◦C until DNA extraction.

2.2. DNA Extraction and Metagenome Sequencing

Prior to DNA extraction, the steel coupons were thawed, and biofilms were scraped
into Lysing Matrix E tubes using a flame-sterilized spatula. Each tube contained both buffers
as above in addition to 10 µL of bovine serum albumin (BSA) to prevent the competitive
binding of iron to DNA [45]. Genomic DNA was extracted from all samples following the
manufacturer’s protocol of the BIO 101 FastDNA Spin Kit (MP Biomedicals, LLC, Santa
Ana, CA, USA) with a few modifications as described in a prior work [46]. Extracted
DNA (ng/mL) was quantified on a Qubit 3.0 Fluorometric Quantitation system (Invitrogen,
Carlsbad, CA, USA) and checked for purity on a NanoDrop 2000 spectrophotometer
(ThermoFisher, Waltham, MA, USA). Exactly 20 µL of each sample was plated on a 96-well
plate for metagenome sequencing.

Metagenomes were sequenced for this study from the down-selection of samples
based on the results of the 16S rRNA gene amplicon sequence analysis published in
Moseley et al. [30] for wood biofilms and Mugge et al. [43] for steel biofilms. By combining
these two similar yet separate experimental designs, a total of 110 biofilm samples were
down-selected to 24 metagenome samples, which included steel biofilms at Anona; steel,
pine, and oak biofilms at Site 15711; and pine and oak biofilms at Site 15470 (Table S1).
These samples were statistically representative of the dataset and were selected based on
sequence counts, Shannon alpha diversity, and taxonomic composition from 16S rRNA gene
sequencing data. Metagenome sequences were generated at the Integrated Microbiome
Resource (IMR) at Dalhousie University (Halifax, NS, Canada). An Illumina Nextera Flex
Library Preparation Kit was used to prepare metagenome libraries from a starting amount
of 1 ng per sample [47]. Following PCR purification and normalization using the Just-
a-Plate 96 Kit (Charm Biotech, San Diego, CA, USA), sequencing was performed on an
Illumina NextSeq 550 System to generate 150 bp paired-end sequences.

2.3. Bioinformatics

Metagenome sequence pre-processing followed Metagenomics Standard Operating
Procedure v3 available in the Microbiome Helper repository [47]. To begin, multiple lanes
of sequencing were concatenated together per sample, and the read quality was inspected
using FastQC [48]. Paired-end sequences were then processed using KneadData [49] to
trim sequences, using Trimmomatic to remove low-quality sequences [50], and then using
BowTie2 to screen out contaminant reads mapping to human and PhiX genomes [51]. GNU
Parallel [52] was used to process multiple samples through KneadData in parallel. A
downstream analysis followed select steps from the Assembly and Metagenome Assem-
bled Genomes Tutorial publicly available on GitHub [53]. Quality controlled paired-end
sequences were assembled into contiguous sequences (contigs) using MetaSpades [54], and
assemblies were evaluated using MetaQuast [55] to obtain per-sample assembly statistics.
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Pullseq [56] was used to filter assemblies to 500 bp contigs and longer, and then BowTie2
was used to map quality controlled, paired-end short reads to contigs to obtain the assembly
percent coverage within each sample.

2.4. Metagenome Taxonomic and Functional Annotation

Taxonomic annotation was performed on assembled contigs using Kaiju [57] with
default parameters to query sequences against NCBI’s nonredundant (nr) protein +euk
reference database [58]. The ‘kaiju2table’ command was used to create relative abundance
summary tables from the Kaiju output of individual samples. Summary tables included
a table of all taxa at the species level as input for a statistical analysis, a table filtered to
exclude <1% of taxa at the species level to understand dominant organisms, and a table
filtered to exclude <0.1% of taxa at the class level to obtain the taxonomic profiles of each
metagenome. Shannon alpha diversity, observed features (richness), and Pielou’s evenness
were calculated on the relative abundance table at the species level within QIIME2 version
2022.2 [59]. Two-sample t-tests assuming equal variance were run in Excel on the Shannon
diversity data to discover statistically significant differences in diversity between the same
substrates at different sites (steel at Anona vs. steel at Site 15711; pine at Site 15711 vs. pine
at Site 15470; oak at Site 15711 vs. oak at Site 15470). Filtered class tables were imported
into R/RStudio (v. 4.1) and merged using the ‘dplyr’ package [60]. The merged class table
was manually annotated by phylum and visualized as a bubble plot using ggplot2 [61].

To infer the genomic potential within the steel and wood biofilm metagenomes, tar-
geted functional annotation was performed using MagicLamp [62], a platform that uses
curated Hidden Markov Models (HMMs) to search for and annotate functional genes of
interest. Within MagicLamp, the LithoGenie pipeline was used to discover genes related
to microbial chemolithotrophic metabolisms, and the WspGenie pipeline was used to
discover genes related to biofilm formation functions. For each pipeline, Prodigal [63] was
used to predict open reading frames (ORFs) on filtered contigs within each metagenome.
Then, gene annotation was performed using hmmsearch within HMMER [64] to query a
custom library of HMM sets against predicted ORFs. Finally, the ‘--norm’ flag was used
to normalize annotated genes by ORFs on each contig, and an output table summarized
the normalized gene abundance across all metagenomes. In LithoGenie, normalized abun-
dance tables were created for metabolic genes related to specific elements (i.e., carbon). The
final output tables were visualized in R/RStudio as described above for taxonomy.

Profile HMMs within LithoGenie and WspGenie were sourced from Pfam [65], TIGR-
FAMs [66], Anantharaman et al. [67], and custom HMMs created and curated following the
method detailed in Garber et al. [68]. For custom HMMs, representative protein sequences
were obtained from UniProtKB [69], and bitscore cutoffs were calibrated against the NCBI
nonredundant (nr) protein reference database [58].

2.5. Statistical Analysis

A statistical analysis was performed using version 7 of the Plymouth Routines in
Multivariate Ecological Research (PRIMER) plus PERMANOVA software (PRIMER-E Ltd.,
Plymouth, UK) and followed select steps for an analysis of multivariate data [70]. For
taxonomy, a Bray–Curtis dissimilarity matrix was created from the merged relative abun-
dance table at the species level. Hierarchical clustering (CLUSTER) was run to generate a
similarity dendrogram, which was then overlaid on a two-dimensional non-metric mul-
tidimensional scaling (NMDS) plot to visualize differences in community composition.
To understand statistically significant differences between the sites, substrates, distances
from structures, and interactions of these factors, a permutational multivariate analysis of
variance (PERMANOVA) main test using a full model (factors included ‘Distance’, ‘Sub-
strate’, ‘Site’, ‘Distance × Substrate’, ‘Distance × Site’, ‘Substrate × Site’) was run on the
taxonomic Bray–Curtis dissimilarity matrix using distance from structure as a covariate,
site and substrate as fixed factors, Type I sum of squares, fixed effects sum to zero to mixed
terms, permutation of residuals under a reduced model, and 999 permutations. Each factor
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and interaction term were examined for its contribution to the model by considering the
p-value, pseudo-F statistic, and estimated components of variation. Using a cutoff p-value
according to the methods of [71,72], factors and interaction terms were removed from the
model if the corresponding p-value was greater than 0.25 [70], and the PERMANOVA was
re-run using this reduced model format. p-values in the text are reported from reduced
models, except for in cases where a reduced model was not required (i.e., where all terms
except for one have a p-value greater than 0.25). Additionally, each full and reduced model
was run using a Type I (sequential) sum of squares, except for in cases where the reduced
model did not contain the covariate factor (distance from structure) or any interaction terms
with the covariate; in this case, a Type III (partial) sum of squares was used within the
model. If the main PERMANOVA test revealed a significant interaction term between the
fixed factors of interest (substrate, site), a pairwise PERMANOVA was run on each factor
within the interaction term; for non-significant interaction terms, pairwise tests were run
only when individual factors were significant.

For a statistical analysis of metagenome functions, normalized gene abundance tables
were used as input to PRIMER7, including a gene abundance table of biofilm formation
functions and gene abundance tables for each of the ten elements. Bray–Curtis dissimilarity
matrices were created for each abundance table, and a hierarchical clustering dendrogram
and an NMDS plot were created only for biofilm formation functions. Using parameters and
the method described above, PERMANOVA main tests were run on each dissimilarity matrix
to discover statistically significant differences between the substrate and site, considering the
effects of distance from structure, within each category of metagenomic function.

3. Results
3.1. Quality and Descriptive Statistics of Assembled Metagenomes

Oak biofilms had the highest number of raw, paired-end reads (average of 4,240,336)
compared to pine biofilms (average of 3,540,881) and steel biofilms (average of 3,028,041)
(Table S1). Of these, an average of 83–89% of reads were retained following sequence
quality control across all samples. Following the assembly of short-sequence reads into
longer, contiguous sequences (contigs), assembly statistics revealed that the oak biofilms
had the highest number of contigs greater than 500 base pairs (average of 56,639) compared
to the pine biofilms (average of 49,726) and steel biofilms (average of 15,455). However, the
average N50 values, a measure of the contiguity of an assembly [73], were the highest in
the steel biofilms (average of 2471), followed by the oak biofilms (average of 1531) and pine
biofilms (average of 927). The mapping rates of reads to assemblies were the highest in the
oak (average of 60.22% mapped) and steel (average of 59.59% mapped) biofilms and the
lowest in the pine biofilms (average of 33.22% mapped).

3.2. Diversity, Richness, and Evenness of Biofilm Metagenomes

The Shannon alpha diversity was higher in the oak (average of 9.96) and pine (av-
erage of 9.25) biofilms than in the steel biofilms (average of 7.12) (Table S1). The oak
biofilms had the same average Shannon diversity at Sites 15711 and 15470 (10.21), while
the pine biofilms had a higher average diversity at Site 15711 (9.57) than at Site 15470
(8.92). The steel biofilm diversity was significantly different between Anona and Site 15711
(p = 0.002) (Table S2), while the pine biofilm diversity was not significantly different be-
tween Sites 15711 and 15470 (p = 0.066) (Table S3). The oak biofilm diversity was also
not significantly different between Sites 15711 and 15470 (p = 0.071) (Table S4). The steel
biofilms had the lowest richness (average of 2052 observed features) and evenness (average
of 0.65) compared to the pine biofilms, which had a greater richness (average of 5388 ob-
served features) and evenness (average of 0.75), with the oak biofilms having the highest
richness (average of 6123 observed features) and evenness (average of 0.79).
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3.3. Biofilm Taxonomic Composition

The steel biofilm communities had the highest percentage of classified contigs (average
of 81.34%) compared to the pine (average of 66.83%) and oak (average of 69.94%) biofilm
communities (Table S1). Regardless of substrate, site, or distance from structure, the compo-
sition of all biofilms was dominated by Gammaproteobacteria (steel, average of 31.5%; pine,
average of 12.0%; oak, average of 21.0%) and Alphaproteobacteria (steel, average of 10.8%;
pine, average of 15.7%; oak, average of 18.4%) (Figure 1). The bacterial classes present in
lesser abundance across all biofilms included Betaproteobacteria (steel, average of 3.02%;
pine, average of 3.3%; oak, average of 3.7%) and Deltaproteobacteria (steel, average of 0.7%;
pine, average of 3.7%; oak, average of 4.2%), although Deltaproteobacteria were overall
more abundant in the wood biofilms than in the steel biofilms. Other classes contributing to
community abundance in the steel biofilms were Epsilonproteobacteria (average of 19.5%)
and Zetaproteobacteria (average of 6.6%). Two classes from the Bacteroidetes phylum
that were important contributors to the wood biofilm communities were Flavobacteriia
(pine, average of 14.2%; oak, average of 11.7%) and Cytophagia (pine, average of 2.3%; oak,
average of 1.1%). Within the Verrucomicrobia phylum, Opitutae were unique to the pine
biofilm communities (average of 2.8%), while Verrucomicrobiae were present in all wood
biofilms, with a higher abundance on the pine (average of 1.6%) than on the oak (average
of 0.02%).

At the highest resolution of taxonomic classification, the biofilm communities clustered
primarily by substrate (steel, pine, and oak) (Figure 2). Anona and Site 15,711 formed
separate clusters for the steel samples, while the pine and oak samples clustered together
at both Site 15711 and Site 15470. However, the hierarchical cluster analysis revealed site-
specific clusters of samples under their larger respective substrate clusters. Following the
results from the PERMANOVA main test of the full model (Table S5), the reduced model
revealed that the factors ‘substrate’ (p = 0.001), ‘site’ (p = 0.001), and ‘distance from structure’
(p = 0.031) were all significant factors shaping the biofilm taxonomic composition, with a
significant interaction between substrate and site (Table S6). Pairwise PERMANOVA tests
for the interaction term showed that the biofilm communities on the steel were statistically
different between Anona and Site 15711 (p = 0.035), the biofilm communities on the pine
were statistically different between Site 15711 and Site 15470 (p = 0.014), and the biofilm
communities on the oak were statistically different between Site 15711 and Site 15470
(p = 0.026) (Table S7).

At the species level, the steel substrates at Anona and Site 15,711 were dominated
by a Gammaproteobacteria bacterium (Anona, average of 13.7%; Site 15,711, average of
6.5%), Sulfurimonas (Anona, average of 8.3%; Site 15,711, average of 5.4%), and Arcobacter
(Anona, average of 8.5%; Site 15711, average of 1.4%) (Tables S8 and S9). Other dominant
taxa on the steel substrates at Anona included Ghiorsea bivora (average of 3.9%), a Zetapro-
teobacteria bacterium (average of 1.5%), a Thiotrichaceae bacterium (average of 1.4%), and
a Rhizobiales bacterium (average of 1.3%), while other dominant steel taxa at Site 15711
were Kangiella (average of 2.8%) and Cocleimonas flava (average of 1.1%). A Rhizobiales
bacterium also dominated the biofilm communities on the pine substrates at Site 15711
(average of 5.4%) and Site 15470 (average of 6.7%), in addition to a Methylophilaceae
bacterium at Site 15711 (average of 1.8%) and at Site 15470 (average of 0.6%) (Tables S9 and
S10). On the pine at Site 15470, other taxa contributing to the community composition were
a Flavobacteriaceae bacterium (average of 4.1%), a SAR86 cluster (Gammaproteobacteria)
bacterium (average of 2.2%), and a Verrucomicrobiae bacterium DG1235 (average of 1.9%).
The oak biofilms also contained an Methylophilaceae bacterium (Site 15711, average of 1.2%;
Site 15470, average of 1.2%) and a SAR86 cluster bacterium (Site 15711, average of 1.6%;
Site 15470, average of 1.1%) at both wooden shipwreck sites. At Site 15470, the oak biofilms
had a higher diversity of other dominant taxa, including a Rhizobiales bacterium (average
of 1.8%), a Planctomycetes bacterium Poly30 (average of 1.5%), and a Rhodobacterales
bacterium 56_14_T64 (average of 1.2%).
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Figure 1. Bubble plot of relative abundance of biofilm metagenome taxonomy at the class level.
Color corresponds to phylum, and size corresponds to percentage of classified contigs. Samples are
arranged on the X-axis primarily by substrate, then by site, then by distance from structure in meters.
Taxa composing <0.1% of community in each sample were excluded prior to constructing plot.

3.4. Biofilm Formation Genes

An NMDS plot and hierarchical clustering dendrogram based on the abundances of
biofilm formation genes (identified using WspGenie in MagicLamp) revealed differences
primarily between substrates (Figures 3 and S1). While the PERMANOVA (main test,
reduced model) showed substrate (p = 0.001), distance from structure (p = 0.004), and the
interaction term ‘distance x substrate’ (p = 0.013) to be significant factors impacting biofilm
formation gene abundance, site was not a significant factor (p = 0.107), and the interaction
term ‘substrate x site’ was also not a significant factor (p = 0.085) (Table S6). Pairwise
PERMANOVA (reduced model) tests revealed significant differences in biofilm formation
gene abundance between the steel and pine (p = 0.001), between the steel and oak (p = 0.002),
and between the pine and oak (p = 0.024) (Table S11). Overall, seven protein domains coding
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for six genes related to biofilm formation in bacteria (Wsp genes) were detected within the
dataset, including three genes related to chemotaxis: WspC, WspA, and WspB-WspD-WspE
(CheW); two genes related to two-component signaling systems: WspE-WspR and WspE;
and one gene related to surface association: WspR (Figure 4). The steel biofilms at Anona
and Site 15711 had an overall higher abundance of biofilm formation genes. Within the steel
biofilms, most of these genes generally decreased in abundance with increasing distance at
Anona, except for WspR and WspA, which decreased from 29 m to 83 m and then increased
in abundance at the farthest distance, 108 m. A similar trend was observed within the steel
biofilms at Site 15711, where biofilm formation genes generally decreased from 40 m to
90 m and then increased in abundance at the farthest distance, 115 m. Although the pine
and oak biofilms overall had lower abundances of biofilm formation genes, the opposite
trend across distance was observed at both Sites 15711 and 15470, where biofilm formation
gene abundance generally increased with increasing distance. This pattern held true for
the pine biofilms, except for WspR at both Sites 15711 and 15470, and CheW and WspE at
Site 15470. In the oak biofilms at Site 15470, WspA, WspE, and WspE-WspR increased in
abundance with increasing distance, while CheW increased from 22 m to 72 m and then
decreased at 97 m.

3.5. Chemolithotrophic Metabolisms

Target genes associated with 10 elements involved in microbial chemolithotrophic
metabolisms, namely, carbon, nitrogen, oxygen, sulfur, iron, manganese, urea, arsenic,
hydrogen, and C1 compounds, were found in this dataset (Figures S2 and 5). The PER-
MANOVA (main test, reduced model) results indicated a high statistical significance of
substrate (p = 0.001–0.002) for all 10 elements, while site was only statistically significant for
genes related to arsenic (p = 0.009), carbon (p = 0.01), iron (p = 0.002), sulfur (p = 0.002), and
urea (p = 0.001) (Tables S5 and S6). While distance from structure was not significant for any
element, the interaction term ‘substrate x site’ was significant only for arsenic (p = 0.004).
The steel biofilms had a higher average abundance of genes related to thiosulfate oxidation
(soxY, soxZ, soxX, and soxA), sulfur oxidation (dsrC, dsrB, and dsrA) and sulfide oxidation
(sqr), oxygen reduction (ccoP, ccoP, and ccoN), nitrite reduction (nirD, nirB), nitric oxide
reduction (norC and norB), and nitrate reduction (napB, napA, and nasA). Additionally, iron
oxidation (Cyc2 rep Clusters 1 and 3) and iron reduction (EetA, EetB, DmkA, and t4ap) genes,
carbon fixation (rubisco form I and II CBB, aclA, and aclB) genes, arsenate reduction (arsC,
arsenate reductase thioredoxin) genes, and hydrogen oxidation (hydrogenase groups 1,
2a, 2b, 3d, and 4) genes were also higher within the steel biofilms. The wood biofilms
had a higher average abundance of genes related to manganese oxidation (mopA, mnxG,
and mcoA), urea hydrolysis (ureA, ureB, and ureC), and C1 cycling, specifically methanol
oxidation (pqq, xoxF, and mxaF), although these abundances were higher in the oak biofilms
than in the pine biofilms.

Site-specific differences in metabolisms included a higher abundance of arsenate
reduction genes at Anona, the highest abundance of methanol oxidation genes at Site 15470,
and the highest abundance of a manganese oxidation gene at Site 15711. Sites 15711
and 15470 had higher abundances of urea hydrolysis genes, while Anona had the highest
average abundances of iron cycling genes. While Site 15711 had the highest average
abundances of sulfur cycling genes, the steel biofilms had the highest average abundance
compared to the pine and oak biofilms at this site. A summary of target genes within
this dataset, including associated elements, predicted functions and pathways, and HMM
sources, can be found in Supplementary Table S12.
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sional scaling (NMDS) plot (B). Data include all samples in dataset (n = 24). Icons are colored by
substrate and annotated with site name; Anona is a historic, steel-hulled shipwreck, and Site 15711
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structure in meters.
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Figure 5. Bubble plot of normalized gene abundance of individual genes related to microbial
chemolithotrophic metabolisms within metagenomes. Color corresponds to element, and size corre-
sponds to normalized abundance. Samples are arranged on the X-axis primarily by substrate, then
by site, then by distance from structure in meters.

4. Discussion

The goal of this study was to compare the community composition and functional
potential of biofilms recruited to different substrates commonly found on the seafloor as a
result of human activities. In this work, steel, pine, and oak substrates were placed near
three extant historic shipwrecks on the seabed to understand how biofilm recruitment
surfaces (i.e., different substrates) impact formation and metabolic potential. Additionally,
comparing biofilm microbiomes within the context of substrate availability in the local
environment provides insight into the similarities and differences of biofilm functional
potential during formation.

The differences in diversity between the steel and wood (pine and oak) biofilms
concur with previous results of a higher diversity in wood biofilms analyzed from 16S
rRNA gene sequencing data [30] compared to a lower diversity in steel biofilms [74]. The
significant differences in the steel biofilm diversity between sites are likely attributable
to characteristics of the environment, namely, water depth; Site 15711 rests in 525 m
water depth, while Anona was sunk in 1250 m of water. These site-specific differences
between steel biofilms have been observed previously [43]. Although the pine and oak
biofilms sampled from the same sites came from the same seafloor experiments (MREs),
the significance of the pine biofilm diversity and the non-significance of the oak biofilm
diversity between Sites 15711 and 15470 may be attributed to differences in the wood
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type [27], such as material properties, one of the determining features of biofilm formation
on a substrate [75].

Alphaproteobacteria and Gammaproteobacteria are bacterial classes within the Pro-
teobacteria phylum that are typically dominant in developing marine biofilms on plastic,
glass, steel, and wood, regardless of laboratory or in situ environment [3,30,44,45,76,77].
Specifically, Alphaproteobacteria, Rhodobacteraceae, and Rhizobiales were observed in
the biofilm communities on all three substrates in this study and were likely associated
with the abundance of CheW and WspA, two biofilm formation genes found in all biofilms.
These Alphaproteobacteria taxa have also been shown to contribute to biofilm formation in
prior studies [78–80]. Although the dominant Gammaproteobacteria on the steel substrates
was not classified beyond the class level, this class is also frequently found within marine
biofilms [45,81], can contribute to short-term biofilm succession on steel [42], and has
recently been implicated in the formation of the biofilm matrix [82]. One of the dominant
Gammaproteobacterial phylotypes, Kangiella, found only in the steel biofilms at Site 15711,
is associated with polysaccharide degradation and carbohydrate metabolism [76] and ex-
tracellular protein degradation [83]. Multiple dominant phylotypes of the iron-oxidizing
class Zetaproteobacteria, and the sulfur-oxidizing Sulfurimonas and Arcobacter, both within
class Epsilonproteobacteria, likely contributed to the greater abundance of iron and sulfur
cycling genes, respectively, on the steel surfaces, which contributed to significant metabolic
differences between substrates.

One of the taxa driving community differences between the steel and wood biofilms,
with a higher abundance in the wood and oak biofilms, was Flavobacteriia, which was also
observed in the 16S rRNA gene sequencing data of these biofilms in a prior study [30]. Re-
gardless of wood type, Flavobacteriia have been shown to be important colonizers of wood
surfaces in the marine environment [84] and to be involved in organic matter degradation
along with Cytophagia [85], which was also more abundant on the pine and oak surfaces
in this study, particularly at Site 15711. Deltaproteobacteria, common wood colonizers in
the marine environment, were also important within the pine and oak biofilms, and their
abundance has been observed to increase with immersion time [76,86]. The abundance of
Betaproteobacteria in the wood samples was mostly attributed to Methylophilaceae, a bac-
terial family important for microbial carbon cycling in terrestrial and marine habitats [87].
The Methylophilaceae family has been explicitly linked to methanol dehydrogenase [88],
one of the highly abundant genes discovered in this dataset, which participates in methanol
oxidation. Verrucomicrobiae and Opitutae, both from the phylum Verrucomicrobia, con-
tributed to the community differences in the pine biofilms at both wooden shipwreck
sites, with the latter also being observed in 16S data from pine biofilms [30]. Opitutae
have been discovered in the rhizosphere soil associated with a species of pine [89], while
Verrucomicrobia were first observed in marine biofilms on glass in the Antarctic [90] and
have been associated with early marine biofilm colonization [91].

The Wsp operon, responsible for regulating biofilm formation through chemosensory
signal transduction in bacteria, plays a critical role in the initiation of biofilm formation
upon surface contact, and it has been extensively studied in P. aeruginosa [92,93]. A recent
study found Wsp systems to be conserved and broadly distributed across bacteria [94],
making it an important model system to study biofilm formation in different environments.
Regardless of shipwreck site, the steel biofilms overall had higher abundances of biofilm
formation genes than the pine and oak biofilms, which may suggest that steel substrates
have a greater potential for microbial attachment and initiation of biofilm formation than
wood substrates, at least in short-term studies. While this observation is likely due to
material properties, biofilms on steel submerged in natural seawater can form quickly
(<2 weeks) [95], and the taxonomic composition of steel biofilms in a closed system can
change within 30 days [42]. The data in this study are supported by pairwise PERMANOVA
tests between substrates, which revealed the most significant differences between steel and
both wood types, and by the higher abundance of the gene complex WspE-WspR in the
steel biofilms. The WspE-WspR region of the Wsp operon codes for a response regulator
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protein within two-component signaling transduction systems in bacteria [96], which have
been studied for their importance in detecting and responding to environmental changes,
biofilm formation, and cell motility [97]. A prior study also discovered the importance of
another response regulator gene, involved in the environmental stress response, within
steel biofilms [73]. In addition to WspE-WspR, three other chemotaxis genes had the highest
abundance at the closest distance to Anona and then decreased in abundance with increasing
distance from the shipwreck, possibly implicating a microbial surface response on the steel
to the presence of a shipwreck on the seabed. Chemotaxis is critical in surface-attached
bacteria, and genes that code for chemotaxis proteins have been shown to significantly
contribute to initial biofilm formation [2]. Although a similar abundance pattern of these
genes was observed in the steel biofilms at Site 15711, the abundance then increased at the
farthest distance; this discrepancy between sites may be ascribed to the size of the structure,
as Site 15711 is smaller than Anona.

From the set of biofilm formation genes targeted in this dataset, the pine and oak
biofilms also had a higher average gene abundance of the response regulator protein
WspE-WspR. However, except for the chemotaxis gene CheR, a higher abundance was
observed in the oak biofilms, which may be related to differences in surface properties
between the wood types. In a comparative study of the interaction of microbial adhesion
on six types of wood, oak demonstrated the highest potentiality for the adhesion of bacteria
and subsequent biofilm growth [98].

Below the photic zone, chemolithoautotrophic metabolisms are important for the re-
generation of inorganic nutrients [99,100]. This microbial contribution has been observed in
pelagic waters [101], in coastal sediments [102], and, more recently, in marine biofilms [103].
Targeting sets of genes corresponding to microbial chemolithotrophic metabolisms in
this study revealed high abundances of sulfur and sulfide oxidation genes on the steel
substrates, likely connected to the higher relative abundance of Epsilonproteobacteria
(Sulfurimonas and Arcobacter), as shown previously [104]. While Epsilonproteobacteria
had a greater abundance at Anona, a steel-hulled shipwreck, a greater abundance of genes
related to sulfur cycling occurred at Site 15711, a wooden-hulled shipwreck, which may
suggest an effect of substrate availability, as all three substrates were deployed at Site 15711,
and only steel substrates were deployed at Anona. While the iron cycling (oxidation and
reduction) genes in the steel biofilms displayed nearly the same abundances across these
two sites, iron oxidation genes were higher at Anona and likely related to the presence of
Zetaproteobacteria, demonstrated in recent studies [105,106].

Other chemolithotrophic metabolisms found to be more important in the steel biofilms
were hydrogen oxidation, arsenate reduction, and nitrogen cycling. Genes involved in
both nitrate reduction (napA and napB) and nitrite reduction (nirB and nirD) were detected
within the steel biofilms; this has been observed previously on steel in seawater [107] and
in deep subsurface biofilms [108]. Nitrogen cycling on steel surfaces may also be linked to
microbially influenced corrosion [109]. Recently, a comparative study of marine microbial
biofilms and planktonic communities in the deep ocean suggested the coupling of hydrogen
oxidation and sulfate reduction to acquire nutrients and energy for biofilm formation
through electron transport [102]. Arsenic is a metalloid toxin present in low abundances
in the marine environment; often exists in oxygenated water in the form of arsenate [110];
and is known to be associated with iron oxides [111], which form as steel alloys corrode
in salt water. While the adsorption of arsenic by iron oxides may remove arsenic from
the water column [112], the presence and activity of the arsC gene in microorganisms may
potentially increase the toxicity of arsenic in the local environment [113]. The arsC gene
codes for a protein to reduce arsenate to arsenite, part of a mechanism that microorganisms
developed to resist and detoxify arsenic through the ars operon [109]. Regardless of site,
the steel biofilms had a higher abundance of this gene than the wood biofilms, which may
be attributed to differences in physical properties between steel and wood substrates, such
as surface roughness, chemical composition, and surface free energy.
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A greater genetic potential for manganese oxidation, methanol oxidation, and urea
hydrolysis was discovered in the pine and oak biofilms. While urea is produced by plank-
tonic bacteria in the euphotic zone [114], the hydrolysis of urea produces ammonia and
carbon dioxide, substrates used by ammonia-oxidizing bacteria for chemolithotrophic
growth [115]. Urease genes have also been detected in archaea in the Arctic Ocean [116]
and in the deep Mediterranean Sea [117]. The higher abundance of these genes within the
wood biofilms suggests a greater potential of wood substrates for harboring microorgan-
isms capable of metabolizing urea, which may potentially contribute to nitrogen cycling
and regeneration in the deep ocean. Manganese-oxidizing microorganisms have been
associated with manganese oxides, which commonly form on steel alloys [118]. While
manganese oxidation genes, particularly the manganese oxidizing protein MopA, were
found in biofilms on all substrates in this study, the abundance of this gene was the highest
in the wood biofilms, which may suggest a connection to manganese-oxidizing bacteria,
which oxidize manganese during lignin degradation [119]. C1 compounds contain no
carbon–carbon bonds, and bacteria utilize these to obtain carbon and energy [120]. Genes
related to C1 compounds were detected in all biofilms; however, this metabolism was
dominated by a high abundance of a methanol dehydrogenase gene in the wood biofilms.
The bacterial degradation of lignin yields methanol [121], used by methylotrophic bac-
teria, and potentially sulfate-reducing bacteria, as a carbon source for growth [75]. This
metabolism contributes to carbon cycling in the marine environment [122], and it is likely
associated with the abundance of Methylophilaceae (Betaproteobacteria) in biofilms. While
methanol dehydrogenase was higher in abundance within the pine and oak biofilms, this
gene was also found in the steel biofilms, with a higher abundance at Site 15711 than at
Anona; this may also suggest an impact of substrate availability, or potential syntrophy
between bacterial species within wood and steel biofilms, as these substrates were present
in the same physical space on the seabed.

The marine biofilm microbiomes shared some commonalities regardless of substrate,
such as biofilm-forming microorganisms and a few chemotaxis and two-component signal-
ing genes, which were shared between sites. The taxonomic composition, however, of the
biofilms diverged between the steel, pine, and oak substrates. Likewise, these substrates
selected for gene abundances related to different chemolithotrophic metabolisms targeted
in this study, including sulfur, iron, and nitrogen cycling, and hydrogen oxidation on
the steel surfaces, and manganese and methanol oxidation on the pine and oak surfaces.
Substrate primarily shaped biofilm microbiomes, specifically taxonomy, on new surfaces
deployed to the seabed, and substrate availability may have contributed to the differences
in metabolisms within the steel and wood biofilms across sites.

5. Conclusions

Anthropogenic expansion of the built environment, from coastal areas to the deep
ocean, is anticipated to increase by at least 23% globally in the next 10 years [123]. Con-
sidering how submerged structures provide habitats for a diversity of marine life, the
continuous addition of structures on the seabed raises new questions about their effects on
biodiversity and, consequently, ecosystem function. Analyzing the functional potential of
marine microbial biofilms in relation to different substrates on the seabed is a new step to
understanding the consequences of anthropogenic activity in marine ecosystems, specifi-
cally on the seabed. The results of this study confirm prior findings that substrate type is a
determining factor in recruitment to and activity within developing marine biofilms. As
the built environment expands, it is important to document the changing landscape of the
seabed to understand the effects on deep-sea ecology before more structures arrive.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/microorganisms11102416/s1, Figure S1: Hierarchical clustering of
biofilm formation genes; Figure S2: Chemolithotrophic metabolism gene abundance; Table S1: Biofilm
sample metadata; Table S2: Steel biofilm t-test; Table S3: Pine biofilm t-test; Table S4: Oak biofilm
t-test; Table S5: Full-model PERMANOVA; Table S6: Reduced model PERMANOVA; Table S7: ‘Sub-
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strate x Site’ pairwise tests; Table S8: Metagenomic taxonomy of steel biofilms recovered near
Anona; Table S9: Metagenomic taxonomy of steel, pine, and oak biofilms recovered near Site 15711;
Table S10: Metagenomic taxonomy of pine and oak biofilms recovered near Site 15470;
Table S11: ‘Substrate’ pairwise tests; Table S12: Individual gene hits metadata.
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